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This paper advocates an unconventional analytical approach to studying the fractal geometry of percolation
at the threshold, which is based on the most general methods of the differential topology. Our particular interest
concentrates on the Alexander-Orba@O) conjecture[J. Phys.(France Lett. 43, L625 (1982], which
assigns the universénean-field value 4/3 to the spectral fractal dimensidrat the percolation threshold for
all embedding Euclidean dimensiongreater than one, i.en=2. Using the topological arguments, we show
that the AO conjecture might be improved for the relatively low embedding dimensiems<s, for which
the analytical resulti=1.327+0.001 is proposed, instead of the original AO estimate 4/3. Meanwhile we
assume that the exact valde=4/3 holds for alln=6, as it follows directly from the well-known mean-field
theory. The improved value ai~1.327 for 2<n<5 is obtained from an analysis of the basipological
properties of the percolating fractal sets at the threshold of percolation. We show that these properties could be
investigated fruitfully with the introduction of the concept of tfractal manifold which might serve as an
effective instrument when considering the topology of the fractal objects. Our results indicate that the proposed
value of d~1.327 for the spectral dimension at the percolation threshold has the fundamental topological
origin related to the most general features of the fractal geometry of percolation at criticality. We argue that the
constraint 2n<5 on the topological dimension of the embedding Euclidean space is the direct conse-
guence of the famous Whitney theorem, which establishes the embedding properties of manifolds from the
viewpoint of their dimensionality. A simple topological condition that identifies the threshold of percolation is
obtained for 2<n=<5. The particular topological restrictions implied throughout the present study are dis-
cussed and the important issue of contractibility of the fractal manifolds is pointed out.
[S1063-651%97)02308-9
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. INTRODUCTION erage density of the fielg/(x) is constant. However, com-
prehensive numerical studies indicésee, e.g., Ref2]) that
Applications of percolation theorisee, e.g., Ref§1,2])  the percolating sets are not homogeneous at length scales
have led to remarkable advances in the understanding of which are in the ranga<y<¢, the quantitya being the
many phenomena related to the formation of irregular strucmicroscopic “lattice” distance(At the percolation thresh-
tures. Topological properties of irregular, random configuraold, £&/a—.) In this range, the sets aself-similarand their
tions recently have received a good deal of attention in asaveraged density scales wigh as «<x°~". HereD is the
sociation with the possible universal nature of the geometryractal dimension of the set, commonly referred to as the
of percolation in the vicinity of the so-called percolation Hausdorff dimension of the fractff], andn is the topologi-

threshold[3,4]. cal (intege) dimension of the embedding Euclidean space,
Indeed, consider an infinite, statistically homogeneouswhich is always not less thal, i.e.,D=<n.
isotropic random scalar fieldy(x), where x is an The fractal dimensioD is not, however, the only geo-

n-dimensional Euclidean vecton&2). The introduction of metric parameter required for the complete description of
an arbitrary thresholth makes it possible to divide the space self-similar fractal objects. The other is the index of connec-
into two topologically different parts: one composed of all tivity 6 [4,6,8—10; contrary to the fractal dimensidd that
regions wheraj(x) <h, marked as being “empty,” and the describes the scaling behavior of the averaged “mass” den-
other composed of the regions whetéx)>h, marked as sity of a fractal set, the inde quantifies how the “elemen-
being “filled.” One of these parts will include a connected tary” structural units(each of size approximately equal to
infinite set, which is said to “percolate.” Changing the a) inside the sef(e.g., the filled and empty sites for the
thresholdh, one can find the critical thresholy, when the  problem of the site percolation on latti¢esre “glued” to-
topological phase transition happeing., the nonpercolating gether to form the entire fractal obje¢Roughly speaking,
part starts to percolate or vice versa the parametep describes the “shape” of a fractal set and
It has been recognizdd,2,4,3 that the geometry of the may be different for fractals even with equal values of the
percolating set at criticality is a typical fractal and that thefractal dimensiorD. The geometric sense of the indéxs
anomalous behavid6] of the macroscopic quantities at the discussed on a descriptive level in Rgt1].) It is worth
point of the percolation transition is due to the divergence oimentioning that the index of connectivity plays an impor-
the percolation correlation length At length scaley large  tant role in many dynamical phenomena on fractals, e.g.,
compared tc, the geometry of the field/(x) looks, in the transport processes in disordered mg6i8—10,12,18 “bi-
statistical sense, homogeneous, so thatntlaeroscopicav-  molecular” chemical reactiongl4,15, and localization of
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waves[4,16,17. The original important promotion of the sideration of the topology of percolation in these dimensions
paramete® was given in the pioneering papdd], where the meets considerable difficulti¢$0]. Meanwhile, a large body
concept of the range-dependent diffusion on percolating ne®f studies, both theoretical and numerical, indicates that the
works was proposed. By applying the scaling theory, it hasrue value of the spectral dimensianh is slightly smaller
been showri€] that the diffusion constant on a percolating than 4/3 for 2<n<5 (for a review see, e.g., Rd#]). (This

network, for length scaleg betweena and ¢, behaves as a smaller value might be a remarkably accurate estimafe of
power law proportional toe ™" for percolation in all 2<n<5 being, nevertheless, quite
This insight, along with the realization that solving the close, although not equal, to 4/3owever, no rigorous ana-
problem of the range-dependent diffusion was equivalent tdytical proof or disproof of the AO conjecture has been ob-
solving the(scalaj elastic vibration problentfor more de- tained for 2<n<5 and the validity of this conjecture for
tails see, e.g., Ref4]), led Alexander and Orbacf8] to  such embedding dimensionsstill remains an open question
evaluate the density of states for vibrations of a percolating4,10].
network at criticality(these vibrations were termed fractdns The goal of the present study is to shawalytically that
with the introduction of the so-called fracton, or spectral,the AO conjecture might bealid for percolation in embed-
dimensiond. This new quantity was defined as a specificding Euclidean dimensions2n<5 if a slight improvement
combination of the fractal dimensioD and the index of _Of the original A result 4/3 is made for theeelngeed, we
connectivity 0 and has the fornd=2D/(2+ 6)<D. In ad- intend to prove that the spectral fractal dimensgbffior the

. . percolating networks at criticality might be assigned the uni-
dition, Alexander and Orbadi8] noted that the spectral di versal value approximately equal to 1.327 in all embedding

mensiond for the percolating networks at criticality was dimensions 2n<5: we note that this value is indeed

numerically remarkably close to the mean-field value 4/35maiierthan the classicaimean-field result 4/3, i.e.
(exact in Euclidean dimensiom=6) for all embedding di- T

mensionsn greater than one, even though the parameters
D and# were by no means constant as functions ¢below
n=6). This numerical evidence led them to speculate th

the spectral dimensiod might be exactly 4/3 for the perco-
lating networks at criticality in all embedding dimensions

n=2. This has come to be known as the Alexander-Orbachy,,se helow an unconvential analytical treatment of the

(AO) conjecture. . . fractal geometry of percolation, which is based on the most
Much theoretical and numerical effort has been made inyeneraitopological methods.(Some topological aspects of
the attempt to prove or disprove the AO °°”J.ec“(’“@’f a  percolation in random scalar fields have been recently dis-
comprghenswe review see, €.9., Reﬁﬂslo]). This conjec-  ¢,ssed in Ref[20].) The basic concept of our study will be

ture is important because, if true, it WOUIQ allow one to de-that of thefractal manifoldto be introduced in Sec. Il. We
scribe the fractal geometry of percolation by using thegyqy that this concept might be an effective analytical tool
unique basic concept of the spectral dimenstbn4/3 for  when dealing with the basic geometric features of the fractal
such fundamental problems as the correlated and uncorrepjects, which yields a key to the description of fractals in
lated percolation on lattices as well as for the more generahe framework of thedifferential topology In Sec. Il we
continuum percolation probleri2,4]. The great interest in  exploit the concept of the fractal manifold to quantify the
this conjecture results not only from the universal value 4/3opological properties of the percolating fractal sets at criti-
assigned tod, but also from the fact that it establishes a cality. This approach is then used in Secs. Ill and IV for the
relationship between the index of connectivityhat appears direct analytical calculation of the spectral fractal dimension
in the description of the dynamical processes on fractals anfl at the percolation thresholgee Eq.(1)]. It is proven in
the Hausdorff fractal dimensioD, yielding the scaling be- these sections that the proposed estinfa}ehas the funda-
havior of the density of the fractal substrate. mental topological origin related to the intrinsic geometric
At present, there exists a rigorous mathematical treatmergroperties of the percolating sets at criticality. The relevant
of the topology of percolation for the sufficiently high em- topological constraints on the embedding dimensioare
bedding dimensiona=6, which is based on the mean-field discussed in detail in Sec. V. With use of the famdubit-
theory. The mean-field percolation can be modeled by theey theorenon the embedding of manifold€1], we show
percolation on a Cayley tre@ethe latticg. A Cayley tree is  in Sec. V that the improved forrfil) of the AO conjecture
defined as a graph without loops in which each node has theould be indeed valid only for the relatively low embedding
same number of branches; the self-similarity of such graphg@imensionsn, which lie in the above range<n<5. We
is not necessarily manifest in their geometric representatiomhow turn to the consideration of the general topological
but is seen in their connectivityl8]. The percolation prob- proof (as rigorous as possible under the limitations of an
lem on Cayley trees has been solved exactly by Conigliarticle) for the AO conjecture in the forrd).
[19] and the rigorous analytical result=4/3 has been es-

d=2D/(2+6)~1.327<4/3, 2<n<b5. (1)

a‘tl'hus we are considering Eql) as the possible improved
form of the AO conjecture for n=<5.
To give support for the improved AO conjectuf®, we

tablished for alln=6 (_see also the review by HE'_:\V"n an_d Il. BASIC TOPOLOGICAL CONCEPTS
Ben-Avraham 10]). This result proves the AO conjecture in
n=6. We start with an infinite, statistically homogeneous, iso-

For thelower embedding dimensions2n=<5, the mean- tropic random scalar field)(x), where xe E" and n=2.
field theory cannot be directly applied and the analytical con{Here E" denotesn-dimensional Euclidean space. The pa-
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rametern is defined to be integérAssume the condition locally identical to the Euclidean spa¢& of some dimen-
|V (x)|#0 everywhere, except perhaps points of negligiblesionality k. The global topology of the fractal manifold is
measure[This condition implies that the fielgh(x) is non-  then defined by the transition functions for each pair of local
degenerated for almost all Note that the infinite values of coordinate systems.
Vi(x), i.e., when|V(x)| =+, are allowed, The introduced concept of thfeactal manifold basically
Let h=h, be the critical percolation threshold; this di- follows the widely known definition of thesmooth
videsE" into the two topologically distinct partss(x)<h,  k-dimensional manifold K= positive integer [21,24], this
and¢(x)>h.. Without loss of generality, we may assume it being the fundamental concept of the standard differential
is the party(x)<h. that includes the percolatingie., con- geometry. The only formal difference between the above two
nected infinit¢ set, which we shall denote y.. Because concepts is that the parametefor the fractal manifold may
the topology of percolation at criticality is associated with not be necessarily the positive integer number, but is natu-
the fractal behaviof1,2], we consider the set of poinE, as  rally allowed to take arbitrary fractional values. Below we
a self-similar fractal object with the Hausdorff dimensibn  refer to the parametés as the dimensionality of the fractal
and the spectral dimensidli=2D/(2+ 6). We also intro- manifold. [Strictly.speaking, to give the rigorogs definitiqn
duce the standard notatiaif. for the boundary of the set of the fracftal r_nanlfold, one shqqld also g'energllze thg notion
. . ) . .~ of the derivatives of the transition functions in the light of
F.. It is clear that whereaB is defined by the inequality

; ) .2 the fractional differential calculugs]; this might be impor-
#¥(x)<he, the boundansF is determined by the equation tant when establishing the topological equivalence between

Pp(x)=he. K th h . 4" in th the manifolds having th&actional values of the dimension-
Let us remark that we use the term “connected” in the 5 |~ Although such a complicated discussion mostly will

preC|sde:, topologlzal anse ‘fphath cqnnected.'.’ “Part]h coN-pe beyond the scope of the present article, we draw attention
hected” means that along with any its two points, the pathy, e following important point. Namely, throughout the
connected set also includes a “path” that goes from one o

. . ; . resent study, the concept of the “topological equivalence”
these points to anoth¢@2]. A path inF. is defined as a jnnjies by definition, that théractal geometries of any two
continuous mappingp: | —F. of the closed unit interval topologically equivalent fractal manifolds are identical, i.e.,
| =[0,1] into F.. The points¢(0) and¢(1) represent, by are characterized by the same geometric parameters, so that
definition, the initial and the final points of the path. A path the dimensionalitie& of the topologically equivalent fractal
in F. can be viewed geometrically as a continuous spatiaimanifolds are always assumed to coincide. This in turn im-
curve y, that goes fromp(0) to ¢p(1) and represents the set plies that the derivatives of the transition functions must re-
of all points (1 ). Note that the mapping that appears in Main continuous up to the sufficiently high, perhaps frac-
the definition of the term “path” is nobne to oneandmu-  tional [5] order consistent with the given value kf The
tually continuous in generdP2], so that the curvey,, may continuity of all the derivatives of the transition functions up
have an arbitrary number of points of self-intersections. Notd® any required(fractiona) order is therefore presupposed
also that due to the path connectedness of theFgetthe ~ below when necessaiy.

spectral fractal dimensiod= 1. Our goal now is to calculate The explicit numerical value ok IS determined by the
i o~ , fractal geometry of the séi.. Indeed, it can be show[23]
the spectral dimensiod for the set~., assuming the fractal

. that the dimensionalitik actually coincides with the spectral
topology of percolation at the threshold. ) y P

To perform such a calculation independently of the par—gaftal Qimiasi?n Ofl the s?it,hi.e.,;zd. %ortlsefqtlhen';ly, ‘;VEi
ticular value of the embedding dimensianwe propose an etermine the topology of the st as that of the fracta

untraditional approach based on the formal introduction of a{nanifold that iglocally iden%cal (e, topglogica!ly quiva-
coordinate system on a fractal object. Following Ref], Ient)E)the Euclidean spade® of the (fractiona) dimension-
we first supply the fractal sét, with the specific topological ality d equal to the spectral fractal dimension of the Bgt

structure of thefractal manifold This means that we repre- (The relationk=d could be illustrated by saying that the

sent the ek as a union of a finite or denumerable numberge qra| fractal dimensiod yields the “number of degrees
of domains, each topologically equivalent to a domain ofot freedom™ for a point particle on the fractal manifold of
k-dimensional Euclidean spade, where the parametés . . L~

will be quantified below. The local coordinate systemsthe dimensionalitk=d.) ) ~

X1, ... X, for each domain can be then defined as the stan- W& now need to explain how the spaee with the frac-
dard Euclidean coordinates iB¥, whereas the transition tional value of the dimensionalitg could be introduced.
from one local coordinate system to another is quantified byassume first that the paramet~dris a positive integer num-
the so-called matrix of the transition functions, which explic-ber and letl denote thelopen unit interval | =(0,1); then
itly describes the global representationfgfas the union of  heG_dimensional Euclidean spa& can be constructed as
the local Euclidean domairi21,24. (The idea to define a

local coordinate system iR, is therefore reduced to “map- ';he d"?i}} pr_O(tJIucll T[Zi 22><2| 40::] dt |dtintt|cal reprezgnt?-
ping” of the Euclidean coordinate basis introduced in the lons ot the Interva 22,24 NOte that any coordinate

Euclidean spac& into the sefF. . The “gluing” of differ-  System inE® clearly would containd independent coordi-
entlocal coordinate systems by means of the matrix of thehatesx, ... X3, each defined on a set topologically equiva-
transition functiong21,24 determines the particulagiobal ~ lent tol, with the Hausdorff dimension equal to one. This
topological structure of the fractal manifoldThus we con- consideration suggests the following formal definition of the
sider the fractal manifold as the topological object that isspaceEY, where d=2D/(2+ 6) is fractional. Consider a
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continuous self-affine fractal curve whose Hausdorff dimenwhend is a positive integer numbde5] and will be dis-
sion is chosen to be (‘QH)/Z?]. and |et|€ denote the cussed in more detail elsewheére.

“unit” element of this curve, so thalt, is reduced td when d_Qnd
#=0. (The concept of the self-affine fractal curve is dis-
cussed in detail in, e.g., Reffl,7].) We now definethe

space EY (d is the fractional as the direct product
1,%...d...x1, of d identical representations of the element
| ,. This definition implies that any coordinate systenEih

S‘d |s.the fractional formally contains thefracnonal.number fined as fi— 1)-dimensional sphergi~L. (Note that for all
d of independentoordinates,, . .. X3, each defined on a 5

. . ~ —1 :
set topologically equivalent th,, with the Hausdorff dimen- POSitive integerd, the standard sphef@~* is the boundary

sion equal to (2- 6)/2. (Note that this dimension exceeds Of the standard disR* [25]) Itis clear that the spherg® ~*
unity in genera). We also remark that the elememy  with the fractional value ofl can be introduced as the fractal
itself can be defined as the formal direct productmanifold through the equation

I X...(2+ 60)/2...X] of (2+ 6)/2 identical representations of )

the intervall. Because the dimensionality of the direct prod- Xit+- +x5=1, (€)

uct is the algebraic sum of the dimensionalities of the terms

involved, the spac&? alternatively can be defined as the Where the number of the components on the left-hand side is

direct productl X...D...x| of D identical unit intervald,  formally fractional and equals td.
where we took into  account that d(2 Let us remark that the fractional number of the compo-

+6)/2=D. This alternative definition immediately shows Nents on the left-hand side of expressi¢@sand (3) is an

that the volume of any domain of the spag® behaves with explicit manifestation of the fact that the introduction of a
the given length scale as proportional toy®, in precise coordinate system on a fractal object formally requires the

agreement with the geometric sense of the Hausdorff dimer}c—r"’wnon"’1I number of the independent coordinates equal to

sionD of the setF,. the spectral fractal dimensioth. We also mention that Eq.
To proceed with the description of the topology of the (3) with the fractional value of the parametdr has been

percolating fractal seF,, we note that the scalar random used in Ref[23] to derive a general analytical representation

field ¥(x) (which had been used to generate theFseat the  for the Laplacian on a fractal set, in the form originally pro-

threshold is assumed to be infinite, isotropic, and statisti-Posed by O’Shaughnessy and Proca¢8igor the diffusion

cally homogeneous. This would mean that thebal (rather ~ equation on fractals.

than only local) topology of the set~; would be that of With use of Eq(3), it is straightforward to obtain that the

d-dimensional Euclidean spadg®, with somefractional  sphereS?~* is seen from its center under the solid angle
value ofd. We formalize this intermediate result by writing in
P v

F.~EY where “~" denotes the topological equivalence. Q=d———, (4)
(For the sake of simplicity, we ignore here the possible ex- I'(d/2+1)

istence of thasolatedfractal “voids” of all the topological

dimensions between 2 ant=2. Such an approximation is whereI is the Euler gamma function. Equatidd) is an
equivalent to saying that the sBt, is assumed to beon-  Obvious extension of the well-known express[@6] for the
tractible, i.e., could be continuously deformed into a point solid angleQ3 to the fractional values ofi. From Eq.(4)

[22]. An inclusion of the isolated “voids” may violate the one immediately recovers the familiar resufts =27 for

Consequently, we geEY~DY. Because, moreover,
F.~EY, one concludes that the fractal manifdig is topo-
logically equivalent to thal-dimensional open disRY, i.e.,

F.~DY. A ramification of this result is that the boundary
dF. of the manifoldF is topologically equivalent to the

boundary of the open disR¢, which can be naturally de-

equivalence relatioff .~E¢ in general, the standard circles! and Q;=4= for the standard two-
Then, it is well known(see, e.g., Ref§22,24,29) that the  dimensional spheré&?. _ _
Euclidean spac&® (d is a positive integéris topologically We now turn to the calculation of the solid andlg for
. ~ . NG A the setr.. More precisely, we intend to prove that the quan-
equivalent to ad-dimensional open disb® defined by the . ~
inequality tity Qg for the setF. must be equal to the fundamental

constantrr in all embedding Euclidean dimensionssA<5.
) ) Knowing the exact value of the solid andlk; and making
Xpt - +xg<l 2 use of the explicit analytical representatif), one then
could obtain the desired value of the spectral fractal dimen-
In view of the above generalized definition of the spE@e sion d by solving the transcendental algebraic equation
(d is fractiona), it is natural to assume that this topological =
equivalence can be extended to the fractional values if
defi théractal itold DI by th me in it Ill. PERCOLATION THRESHOLD
one defines heractal manifo y the same inequality FROM THE TOPOLOGICAL VIEWPOINT

(2) now formally having theractional numberd of the com- _ s
ponents on the left-hand sidéThe proposed topological Consider first the closed-dimensional diskD¢ that is

equivalence of the manifold§® and D¢ for the fractional the union of the_ope@-dirrlensional disko 9 and its bound-
values ofd could be rigorously considered similar to that ary S¢7%, i.e., D4~D9US? L. The closed distD? can be
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defined clearly by the inequalibﬁ+ a +x%s1 and is to-  ated with the smallest value possible for the parameteso
pologically equivalent to the closed sEt~F,UJF,, i.e., thatthe manifoldD? must be “minimal” from the viewpoint
D_ENF_(:- The deduced topological equivalen@~?c is  of its dimensionality. Thus we assume that the fractal mani-

the formal topological manifestation of the percolation struc-fold D9 has the lowest possible dimensionalidy at the
ture of the seF, at criticality. In particular, it immediately threshold of percolation; this lowest dimensionality must be

ensures that the sé_tc includes the point at infinitP.. of the defined from the relevant topological conditions to E dis-
embedding Euclidean spa& (n=2). (Note that inclusion cussed below. The concerned property of minima!ityi)d’f _
of the point at infinity is the topological formalization for the at the threshold would then impose the corresponding restric-

divergence of the percolation correlation length at the threshtions on the topology of the curvEZ, which is defined to
old §—o.) We can now identify the poinP.. with, for in-  coyer the manifold9 everywhere densely. To quantify the
stance, the northern poh¢ of the spheres? 2. (In the event  property of “minimality” in the topologically accurate way,
of the positive integed, the mapping®..— N is discussed in we propose the following three-step consideration outlined in
Ref. [24].) Then, letS be the southern pole &% It is Secs. lILA-IITC.

clear that the two pointsl andS of the spheres®~* are, in

the standard sense, diametrically opposite because3q. A. Exclusion of points of self-intersections

(which formally defines the fractal manifoEEF"l) is invari- ) ~
ant under the inversion of all the coordinates L€t us first recall that the mapping that generates the

X1— = X1, -+ . Xg——X7 - path';q) has been defined as the continudhst not neces-
The important step is to notice that the manif@dd is  sarily one-to-oneand mutuallygontinuou$ mapping, so that

path connected; hence, along with the two poMtandS, it  self-intersections of the curvey were allowed in general

also includes a patfy,, that goes fronN to S. Of course, the (see Sec. )l On the other hand, we take into account that the

manifold D¢ may include in general a variety of different dimensionalitya of the fractal manifoldD? has been as-
pathsy, that connect the two pointd andS. We are now sumed to take the lowest, under the relevant conditions,
interested in finding(if possible a particular path?g with  Value at the percolation threshold. But the lower the dimen-

the initial pointN and the final pointS, which everywhere sionality d of the manifoldD?, the “shorter” the pathyy .

densely[25] covers the manifold®. (Roughly speaking, (Note that this path is everywhere denseDifi.) This sug-
“everywhere densely” means thgtg, passes through each gests the assumption that the property of minimality might

point of DY. In general, there may exist such points@?‘ enable one to construct an everywhere dense coveriff of
through whichyy passes more than once; these would be thdy the shortest pathg ppssible, namfaly, by the fractal curve
points of self-intersections of the curde;.) Y%, Which hasno points of self-intersectiondn other
The pathy; may exist under the following topological words, the shortest paty; yielding, by definition, an every-
constraint on the dimensionaliif of the manifoldD¢. In where dense covering of the rnanjﬁd]hd would be the one
fact, becaus®? is the fractal manifold, it is reasonable to that passes through each point@F once and only once
consider the patﬁ?g as a spatiafractal curve[1,7] having Thus the condition thay has no points of self-lnterseitlons
some Hausdorff fractal dimensidh=1. This curve carev-  Would be that topological restriction on the geometry;gf

erywhere denselgover the manifoldD & (which has been that we associate with the property of minimality Bf at

guantified as the fractal set of the Hausdorff dimendibn the percolation thre;hold. We use this restnctlon. In Sep. v
. ~ o~ ) to calculate the desired numerical value of the dimensional-
and the spectral dimensiah) only if A=D. Since the Haus-

dorff dimensionD is always not less than the spectral dimen-ggnqegj:ewou'd appear in the modified for#) of the AO
sion d=2D/(2+6), i.e., D=1, one must requireA=d. J '

. ~ Having required that the fractal manifold® can be ev-
Taking into account thadl =1 due to the path connectedness ~ :
DY one gets the condition erywhere densely covered by the patf that has no points
0 ' 9 of self-intersections, we immediately impose an essential to-

pological constraint on the admissible values of the dimen-
sionality d. In fact, it is clear that such a particular covering

_ _ e cannot be constructed for the sufficiently high valuesdof
The inequality(5) shows that the fractal manifold® canbe ¢, jnstance, this is already impossible fdr=2. The rel-

everywhere densely covered by the fractal Eu}?@eonly for  evant example is the well-known Peano cufge7], which
the relatively low values of the dimensionalitythat are not is defined as the plaﬁa E\th densely covering the two-
beyond the rangéb). (In higher dimensionsl, the manifold  dimensional unit squaré X | . This curve, however, has an

by the fractal curve. of multiplicity 4 [27]) where different segments of the curve

Our attention is further concentrated on the topologica@re in contact with each other. Consequently, the condition

properties of the curve at the percolatiorthreshold Itis ~ that v hasno points of self-intersections would already
intuitively clear that the concept of the threshold is associimply that d is lessthan 2, i.e., =d<2. A more precise

1<d<A. (5)
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upper bound ford in this inequality will be obtained below Struction provides a homeomorphism between the Koch
(see Sec. Il B. curve and the unit intervdl ; however, the Koch curve is the

The imposed condition for the pa% to have no points fractal object of the Hausdorff dimension log4/

of self-intersections means that the corresponding mappingg3~1.26 . . .>1 [5,10,1§, whereas! is a segment of a
@: 1D3Y is aone-to-one continuousiapping rather than smooth curve whose Hausdorff dimension is clearly equal to

simply continuous. “One-to-one” indicates that the points of one)
the unit intervall are in a one-to-one correspondence with

the points of the manifoldD 9 (up to a set of negligible _
measurg so that the inverse mapping & D9— | can be We now strengthen the above inequalityg 8l <2 by con-

. ~ . sidering the topological consequences of the conclusion that
introduced. We now prove that for sughthe inverse map-

ping $~ 1 is also continuous, so that the pajy is actually the pathyj is hor_neomorphlc tol . .Indeed, there is 3~re-
ted by ane-to-one mutually continuousapping, . markable topological resuli27] saying that the curveyy
genera _ ) = that is homeomorphic to the intervdl can be embedded
Indeed, consider a one-to-one continuous map@ngf (yithout self-intersectionsinto the specific topological ob-
the unit intervall onDY, i.e., $:1 —DY. Becausap is one  ject known as the Sierpinski carpéfhe Sierpinski carpet
to one, we can introduce theder relationfor the points of  therefore can be treated as thaiversal coveringfor the

DY in the following way. EEfine the parametee | that curve ';/g homeomorphic tol [27].) The topology of the

ranges over the unit intervdl. Then the mapping can be  Sierpinski carpet had been widely investigated; it can be

given by a continuous single-valued function of the variableshown(see, e.g., Ref.18]) that the Sierpinski carpet is the
t, i.e., B=B(t), where the pointsh(t) range oveDd fort  Plane fractal set and that its Hausdorff fractal dimension is

varying between 0 and 1. We now introduce the order rela-equ"’ll,f0 log8/log8-1.89 . .. .Because the property for the

tion onD9 by setting thath(t,)> B(t,) if and only ift;>t, curve yy to be homeomorphic to is the topological invgri-
for all t;,t,e 1. This order relation makes the functigit) ~ 2nt[27], one should require that the Hausdorff dimension
monotonically increasing on . [One could define, alterna- of the curveyy should not exceed the value log8/log3 for its

tively, that $(t,) <$(t,) if and only if t;>t, for all t;,t, universal covering, i.e.AsIog?/Iog& From the ineggglity
T (5) one then gets the constraint on the dimensionalitin
the form

B. Constraint on the dimensionality d

e |, making the functionp(t) monotonically decreasing on
the intervalr] Thus the functiong(t) becomes a single
valued continuousmonotonic function on the intervall ,
with the pointsg(t) ranging overDY. It is widely known 1<d=<log8/log3~1.89...<2, (6)
from the standard analysisee, e.g., Ref28]) that for such

a function ¢(t) with the aboveorder relation the inverse

iond -1 1 i ; . . )
function ¢~ is well defined, single-valued, and continuous. providing theexistencef the everywhere dense covering of

Q.E.D. = ~ .
... the manifoldD® by the fractal curveyy, which has no
Our result, therefore, says that the property of m|n|maI|typoints of self-intersections.

of D¢ makes it possible to construct an everywhere dense
covering gfﬁ by the specific patﬁ;/;;S where the mapping

& 1 —DY is one to one and mutually continuo(sp to a

set of negligible measuyrerather than simply continuous. We are now ready to quantify the property of minimality
Moreover, the very existence of such a path already impliesf the manifoldD? in the final form. Indeed, we argued
that the dimensionalitﬁ of the manifoldD? is less than 2, above that the minimal fractal manifold® can be every-

i.e., 1<d<2. A one-to-one mutually continuous mapping is where densely covered by the fractal curyg that is ho-
;Jsuallly ttermed hc:mgomgrphIs_rn[Zti,ZtSI,hZZ; thus \;ve (f:an. _ meomorphic to the unit interval. Assume that this curve is
ormulate our conciusion by saying that Ine property o mlnl_seen from the center of the manifdf (i.e., from the center

. ~ . . = _ —~ ~
mality of D% implies the existence of the patyy; that ev of the spheresi~1) under the solid anglé). Becauséy is

erywhere densely covers the manif@d and is homeomor- = . ~ . .
M y COVER everywhere dense B9, the solid angle) is easily seen to

pth to the unit interval . (Note that in the framework of the coincide with the solid anglé‘2~ that defines the Sphere
present study, we consider the term “homeomorphism” as &d-1 [see Eq(4)], ie., 05=00 ¢
_ R , 1.C., d— .

weaker topological concept than the “topological equiva .
polog P polog d Then, the concept of the percolation threshold has been

lence.” In fact, we imply that the topological equivalence of i : .
two fractal manifolds preserves their fractal geometry, Sozissouated with the smallest value possible for the parameter

that any two topologically equivalent fractal manifolds nec-d, yielding the critical dimensionality of the fractal manifold
essarily have the same geometric characteristics. Meanwhil®C. [This critical dimensionalityd must be implied in the
two homeomorphic manifolds may have different fractalmodified form (1) of the AO conjecturd. Taking into ac-
structure. A well-known example is the construction of thecount that the solid angl@7 is the monotonically increasing

Koch curve from the unit interval [5,10,18. Such a con- analytical function of the variablé [in, at least, the range

C. Definition of the critical solid angle
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(6) that is of interegt one then defines the corresponding and (9), we find that the parameted at the percolation

critical value of the solid angl€g i, to be assigned to the threshold obeys the transcendental algebraic equation of
threshold of percolation. Thus the critical solid angle completely topological origin,

Q73 min is given by Eq.(4) when substituting the critical

value of the dimensionalityd. In view of the above, e

QOF min musicoincide with the smallest value possible for the m =7
solid angleQ) (this being the solid angle determined by the

fractal curveyz), which we denote by,;,. Hence, at the
threshold of percolation which holds for 2<n<5 (see Sec. ¥ Calculation of the

spectral fractal dimensiod from Eq. (10) is immediate.
Indeed, under the restrictioi®), the solution to Eq(10) is
easily proven to benique From a simple numerical consid-
eration one finally obtains

(10

QH:QH,min:ﬁmin- (7)

We now turn to the explicit calculation of the quantity
Opin. This would give us the key to obtain the desired value d=1.327+0.001. 11

of the dimensionalityd at the percolation threshold by com-
bining Egs.(4) and (7).
The result(11) yields the desired, critical value of the spec-

IV. CALCULATION OF THE CRITICAL PARAMETERS tral fractal dimensiorﬁ for the percolating sets at the thresh-
old of percolation[see Eq.(1)]. The constant on the right-

To obtain the numerical value of the solid anflg,,, we  hand side of Eq.(11) is remarkably close tqalthough
are reminded that the initial and the final points of the pathslightly smallerthan the original AO result 4/3 and has the

v are, respectively, the two diametrically opposite poles ofundamental topological nature, having been deduced from

the spheresi~1, i.e., the pointN andS. It is clear that the the most general ggometnc properties o_f the fractal mani-
-~ ., folds. These properties have been described above by such

path g going fromN to S cannot bg based on the solid f,nqamental topological concepts as path connectedness, to-

angle() smaller than the one that defines #tandard arch  pological equivalence, and everywhere dense covering and

of the semicirclewith the end pointdN andS. [Note that the  are manifest in expressioi()— (9).

inequality (6) provides the existence of a homeomorphism  The validity of the result(11) assumes that the fractal

between this arch angly .] Assuming the embedding dimen- manifold D® (which has been introduced to approximate the
sionality n to be greater than one, i.a>=2, one immedi-  topology of the percolating fractal sEt, at criticality) could

ately concludes that the standard arch of the semicircle witlp everywhere densely covered by the fractal c@rgavith—
the diametrically opposite end poirfsandSis based onthe ¢ ngints of self-intersections. The necessary constraints on

solid angle(2,/2= ™ wt;ereQz=2w is the total solid zingle the intrinsic geometry of the manifold? related to the ex-
for the standard circl&" [see Eq(4)]. Hence(=0,/2=m  jstence of such a particular covering already have been dis-

and, consequently, cussed abovgsee, e.g., the inequalitie)]. However, the
~ important issue ofembeddingof the manifold D¢ into

Qpmin= 1. 8 n-dimensional Euclidean spa¢g' (n=2) and the relevant

_ constraints on the parametermust be also pointed out. We

Because, moreovef)g min=Qmin at criticality[see Eq(7)],  prove below that the fractal manifol8® whose dimension-

one finally gets the critical valu@7j i, of the solid angle ality d obeys the inequalitys) can be embedded into a not

3, ie, more than five-dimensional Euclidean spa&®, i.e.,
2=n=<05. The derivation of this inequality will complete the

QF min= . (9 topological proof of the AO conjecture in the forft). We

proceed as follows.

Equation(9) proves the above assertion that the solid angle

Q7 for the percolating fractal sef.~DY is equal to the V. CONSTRAINT ON THE EMBEDDING DIMENSION

fundamental constant at the threshold of percolation. The ) .

validity of this result assumes, at least, that the topological L€t 0<e<1 be an arbitrary small positive parameter and

dimension of the embedding Euclidean spacés greater let A; be an arbitrary point of the curvey, i.e., Aje y3.

than one, i.e.n=2. In Sec. V, we prove that has the upper Then, letn denote the topological dimension of the embed-

bound equal to 5, so that Eqg)— (9) are actually valid for ding Euclidean spac&"; we assume thah is an integer

2=sns<>5. number greater than one, i.e=2.

Using Eq.(9), it is now straightforward to obtain the spec-  Surround the poin#; with the closedh-dimensional disk
tral fractal dimensiord at the percolation threshold. In fact, Dj'(¢) of radius &, so thatA; would be the center of
taking into account that the solid andlg; is the function of D_i“(s)_ The diskD—i”(s) could be regarded clearly as tke
the spectral fractal dimensiod and combining Eqgs(4)  vicinity of the pointA; in the embedding Euclidean space
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E". The boundary of the disI{Ti”(s) is defined as the Unambiguously defined by the given sequence of the mutu-
(n—1)-dimensional spher&~*(z), i.e_,ﬁD_in(s):Sn—l(g)_ ally intersecting diskD{'(¢) for 1<i<N(e) and might be
. . e~ | T guantified in the explicit form by th&l(g) X N(&) matrix of
.Con3|der the mte.rsecEai (£)NDT of the diskD;(s) the corresponding transition functiondhe matrix of the
with the fractal manifoldD®. In the most general case, the transition functions could be obtained directly following,

set of pointsD"(s)NDY is disconnected since it may in- e.g., Refs[21,24. See also the relevant discussion in Sec.
clude more than one “piece” ab?. We are now interested !I-) After all, the compactness a2 [21,24,2 immediately

in the path-connectedubset oD_i”(s)ﬁD_a that includes the follows from the fact that the numbe(z) of all the do-

: _ . _ ) mainsEZ(¢) is finite for £>0.
po(ln;C%.( )r?g_%Ot:nd;h'S (Sl;bset by ai(e), ie., It is theoretically important to note that the dimensionality
a;(e ile ) | € aj(€).

°) _ of the manifoldM?= U;E?(¢) is defined by the dimension-
Then, lety;(e) be an element of the patyr; that every-  gjity of thelocal elementsE?(¢) and is equal to 2 as soon as
wherg densely covers the subse(s). Assuming the in-  eachE2(e) is topologically equivalent to a domain of the
equality (6), one concludes that the elemepf(e) can be  two-dimensional Euclidean plare’. The latter, of course,
embeddedwithout self-intersectionsinto an element of the means that eaclocal eIementEiz(s) can be embedded into
Euclidean planeE?, which we denote byE’(e) (see Sec. E2, This property, however, is onlipcal because thelobal
Il1). Hence there exists a one-to-one mutually continuougopology of the(entire manifold M2=U;E?(¢) may need
mapping ¥; of the element y(s) into EZ(e), i.e., more embedding dimensioms depending on how the local
b yi(e)—EZ(e). elementsE?(¢) are glued together to form the global geo-
SinceA; was assumed to barbitrary point of the curve metric structure ofM Hence the er;npeddingz Euclidean
3, one can construct a sequence of the mutually intersecBPace for a two-dimensional manifol® is notE” in gen-

. . =h ~ eral, but could be more dimensional. A relevant example
ing disks Di(e) that covers the wholeys (and hence the might be theMobius bandwhich is a two-dimensional com-

whole D) for the indexi varying, say, between 1 and some pact manifold but cannot be embedded iEfo[21]. Thus we
integer numbem(s)>1. Indeed, one could find, for in-  are already prepared to conclude that the embedding dimen-
stance, the two end points of the elemef(te), which lie on  sionn for the (compact manifold M of the dimensionality

the spherésln’l(s) and we denote by, _; andA;. ;. Then, s might be greater in general thani.e.,n=s.

one defines the disk®" ;(&) andD", ,(&) centered at the The global embedding of manifolds into the Euclidean
pointsA,_; andA, , 1, respectively. Similar to the above, one SPaceE" is quantified by the famouseak Whitney theorem
finds the new elementy: ;(s) and ;. 4(¢) of the curve (see, e.g., Ref.21]). The conclusion of this theorem is that

~ . (i) any compact manifoldV® whose dimensionalitg is in-
vg: these two elements are easily seen to have the COMMQAgercan balwaysembedded into the Euclidean spae

end pointA;, which is the center of the disb(¢). In  of the sufficiently high dimensionalitp=s; moreover,(ii)
addition, each of the elemenis_,(¢) andy;,.(¢) has one the value ofn does not exceed the numbes-21 (for the
more end point opposite td;. Let these end points be commonly impliedprime embedding that useall dimen-

Ai_, for Ji_1(e) and A, for y;.,(¢). The pointsA;_, Sions n), so that n could be found in the range
andA, , , are then identified with the centers of the new disksS<N<2S+ 1H (For_tr;]e LU" @scuss(;on of ;he parrcular fasr;
D7 (2) andDT. (=) and so on untl one reaches the north- TR RIS T T8 ™ o8 I P L e e Whit
ern N and the southen$ poles of the spher&"~". (Note ey theoremguaranteeshat the compact manifol® can
that the pglntsN andsS are, by definition, the end points of |, empedded int&2s+?, This, of course, does not exclude
the curveyg.) For the positive(nonzerg values ofe, the  thatM* could be already embedded into the Euclidean space
total number,N(e) of disks D{'(¢) needed to cover the E" whose dimensionalityn is smallerthan 2+ 1 if the ap-
whole y3, is finite, i.e., N(g)<e for £>0. Hence all the 2r02rs'iti tr%?ngtogg:ilre(:[ggIt;)sn?h:x())pl)ir ;'r?rgzeetrzie\éﬂmz of
. 4 . ~ =
.d'SkSpi (&) covering the curvey; can be enqmerated by the dimension forM3; it is clear that any embedding ®1° into
indexi varying between 1 anbi(¢), i.e., 1<i=<N(g). he Euclidean EM of the dimensionalitym> 25+ 1.
The next step is to define the mappingt € Euclidean spac ot the ensionality
~ o~ ) i , could be reduced, according to the Whitney theorem, to the
it vi(e)—E{(e) for all 1<i=<N(e). This generates the prime embedding into somg" with n<2s+1.
sequence of the mutually intersecting eIemeEftSs_), which We are now going back to the manifol?= U,E%(z).
lies, by assumption, in the Euclidean spde&with some  For this manifold, the above parameteis equal to 2, i.e.,
n=2. Let M?=U;Ef(s) be the union of all the elements s—2 Making use of the Whitney theorem, one immediately
EZ(e) for 1<i<N(e). We now claim thatM? has the to- concludes that the prime embeddingMf could be found
pology of the compact two-dimensional manifold embeddednto at most five-dimensional Euclidean sp&% where we
into E" (n=2). (For the accurate definition of the term took into account that £+1=5 for s=2. In general, the
“compact” see, e.g., Ref§24,25) Indeed,M? is explicitly  dimensionalityn of the embedding Euclidean spac'
represented as the union of the finite numbKe) of the  would be not less than the dimensionality of the manifold
elementsE?(&), each topologically equivalent to a domain M?2 itself, i.e.,n=2, and not more than the dimensionality
of the two-dimensional Euclidean plaf&. The transition 2s+1=5 guaranteed by the Whitney theorem, ies5.
from one local domairEiZ(s) to anothefe.g., toEizil(s)] is  Finally, one gets
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2<n<2s+1=5, (12 tal sets at the threshold have the topological properiyoof
tractibility [22]. Such an approach actually ignores the
possible role of the isolated voids of the topological dimen-
yielding the desired constraint on the dimensionatityThe  sions between 2 and=2, wheren is the embedding Eu-
result(12) completes the proof of the AO conjecture in the clidean dimensioiisee Sec. )l Thus the resul(11) might be

form (1). Q.E.D. exact only for the contractible percolating fractal sets.
A comprehensive investigation of theoncontractible
VI. SUMMARY AND CONCLUSIONS fractal manifolds that include the isolated voids might be the

topological problem of the outstanding significance. For in-

In summary, we have shown that the Alexander-Orbaclstance, this problem might be associated with the problem of
conjecture [3], which assigns the universamean-field  the topological classificatiorof the fractal manifolds from
value 4/3 to the spectral fractal dimensidnat the percola- the viewpoint of algebraic codes when each code identifies
tion threshold in all embedding Euclidean dimensionsthe topological type of the fractal manifold through some
n=2, might be improved for n<5 to have the modified classification algorithnji29]. A computer realization of such
form given by Eq.(1). The improved form(1) of this con-  classification codes might then answier the algebraic way
jecture would then imply the value approximately equal tothe important, for the actual applications, question whether
1.327 for the spectral dimensiahat the percolation thresh- or not the twp given aIgebralc'codes cqrres_pond totdipe-
old in all embedding dimensions2n<5. We note that this ng|cally equwalentfractal me}nlfolds.(Th[s. might be essen-.
improved value is slightismallerthan the original AO re- tial also for the direct numerical recognition of the topologi-

sult 4/3 (which, as we argued above, remains valid forC‘fil eq_uival_ence _Of_ the fractal manifolds_ of give_:n
n=6). dimensionality) A similar problem of the topological classi-

To advocate the improved forf) of the AO conjecture, fication of thesmoothmanifolds has received a good deal of

we have proposed an unconventional analytical approacﬂttem'on in the modern topology and the exact algorithmic

based on the most general methods of the differential topolglassmcatlon of the two-dimensional smooth manifolds has

ogy. We have shown that the basic topological features oli.)een develope{P9]. (It is worth mentioning, however, that

the percolating fractal sets might be effectively investigateothe algorithmic  classification of the three-dimensional
with the introduction of the concept of tHeactal manifold smooth manifolds meets already conS|derabIg difficulties,
which extends the widely known concept of the SmoothWhereas the classification of the smooth manifolds whose

k-dimensional manifoldK is a positive integerto the frac- dlmensllo[rlzagljtg/ is not less than 4 cannot be performed in
tional values of the dimensionality In the framework of the pr'?:'g eite 0% the considerable difficulties that miaht arise
present study, we associated the topology of percolation at P 9

. itchf. Thi ~ when analyzing the topological properties of the noncon-
the threshold with that of the fractal manifditf’. This mani-  yactiple fractal manifolds, however, we might attempt to an-

fold was defined as the closeddimensional disk, where the ticipate the possible values of the spectral fractal dimension
parameted coincides with the spectral fractal dimension of g at the threshold of percolation for the noncontractible per-
the percolating set. s colating sets. In fact, it is intuitively clear that the inclusion
The introduction of the fractal manifol®? has made it of voids would act towards a more intensified percolation
possible to find a simple topological condition that identifiessince the convergence of the percolating set to infinity would
the threshold of percolation. In fact, we argued that thebe quicker in this case. Hence the percolation threshold then
boundary of the manifoldD® [which is defined as Might be achieved for thiewer value of the spectral fractal

(d—1)-dimensional sphersi~1] must be seen from inside dimensiond compared to the valugi) for the contractible
under the universal solid ang{ég= 7 just at the percolation sets. Thus, one could expect that the fractal dimension
threshold[see Eqs(8) and (9)]. With use of the Whitney might be slightlysmaller than approximately 1.327 for the
theorem[21], we have shown that the restilg= 1 is valid ~ most general topology of percolation when the voids might
for percolation in all embedding Euclidean dimensionsbe present in a considerable range of length scales. Such a
2<n<>5. conclusion might be supported, for instance, by the numeri-
In view of Eq.(4), the proposed conditiofij= leads to  cal results of Normanet al.[30], which are among the most
the transcendental algebraic equa@ﬁ’a/z,r(a,er V)= accurate; these results were obtained for the plane percola-
tion (n=2), vielding d~1.321, which is indeed slightly
smaller than the valugll). A more detailed consideration of
the topological properties of the noncontractible percolating
f{ractal sets might be an attractive point for future studies.

for the spectral fractal dimensiahat criticality, which holds
for 2<n<5. Under the relevant topological constraints
guantified by the inequality6), the solution to this equation

is unique, yielding the value of the spectral fractal dimensio

at the percolation thresholdd=1.327+0.001 for all
2<n=<5 [see Eq(1)]. This result has the fundamental topo-
logical origin and is related to such basic topological con-
cepts as path connectedness, topological equivalence, and This work was sponsored by the Russian Foundation of
everywhere dense covering. This proves the AO conjectureundamental Resear¢Rroject No. 97-02-1648%nd by the
in the modified form(1). INTAS Grant No. 93-2492-ext within the research program
It must be emphasized that the analytical approach proef the International Center of Fundamental Physics in Mos-
posed in the present study assumes that the percolating fracew.
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