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Topological proof for the Alexander-Orbach conjecture
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~Received 23 December 1996; revised manuscript received 17 April 1997!

This paper advocates an unconventional analytical approach to studying the fractal geometry of percolation
at the threshold, which is based on the most general methods of the differential topology. Our particular interest
concentrates on the Alexander-Orbach~AO! conjecture@J. Phys.~France! Lett. 43, L625 ~1982!#, which

assigns the universal~mean-field! value 4/3 to the spectral fractal dimensiond̃ at the percolation threshold for
all embedding Euclidean dimensionsn greater than one, i.e.,n>2. Using the topological arguments, we show
that the AO conjecture might be improved for the relatively low embedding dimensions 2<n<5, for which

the analytical resultd̃51.32760.001 is proposed, instead of the original AO estimate 4/3. Meanwhile we

assume that the exact valued̃54/3 holds for alln>6, as it follows directly from the well-known mean-field

theory. The improved value ofd̃'1.327 for 2<n<5 is obtained from an analysis of the basictopological
properties of the percolating fractal sets at the threshold of percolation. We show that these properties could be
investigated fruitfully with the introduction of the concept of thefractal manifold, which might serve as an
effective instrument when considering the topology of the fractal objects. Our results indicate that the proposed

value of d̃'1.327 for the spectral dimension at the percolation threshold has the fundamental topological
origin related to the most general features of the fractal geometry of percolation at criticality. We argue that the
constraint 2<n<5 on the topological dimensionn of the embedding Euclidean space is the direct conse-
quence of the famous Whitney theorem, which establishes the embedding properties of manifolds from the
viewpoint of their dimensionality. A simple topological condition that identifies the threshold of percolation is
obtained for 2<n<5. The particular topological restrictions implied throughout the present study are dis-
cussed and the important issue of contractibility of the fractal manifolds is pointed out.
@S1063-651X~97!02308-8#

PACS number~s!: 05.40.1j, 02.40.Vh, 05.70.Jk
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I. INTRODUCTION

Applications of percolation theory~see, e.g., Refs.@1,2#!
have led to remarkable advances in the understandin
many phenomena related to the formation of irregular str
tures. Topological properties of irregular, random configu
tions recently have received a good deal of attention in
sociation with the possible universal nature of the geome
of percolation in the vicinity of the so-called percolatio
threshold@3,4#.

Indeed, consider an infinite, statistically homogeneo
isotropic random scalar fieldc(x), where x is an
n-dimensional Euclidean vector (n>2). The introduction of
an arbitrary thresholdh makes it possible to divide the spac
into two topologically different parts: one composed of
regions wherec(x),h, marked as being ‘‘empty,’’ and the
other composed of the regions wherec(x).h, marked as
being ‘‘filled.’’ One of these parts will include a connecte
infinite set, which is said to ‘‘percolate.’’ Changing th
thresholdh, one can find the critical thresholdhc when the
topological phase transition happens~i.e., the nonpercolating
part starts to percolate or vice versa!.

It has been recognized@1,2,4,5# that the geometry of the
percolating set at criticality is a typical fractal and that t
anomalous behavior@6# of the macroscopic quantities at th
point of the percolation transition is due to the divergence
the percolation correlation lengthj. At length scalesx large
compared toj, the geometry of the fieldc(x) looks, in the
statistical sense, homogeneous, so that themacroscopicav-
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erage density of the fieldc(x) is constant. However, com
prehensive numerical studies indicate~see, e.g., Ref.@2#! that
the percolating sets are not homogeneous at length sc
x, which are in the rangea!x!j, the quantitya being the
microscopic ‘‘lattice’’ distance.~At the percolation thresh-
old, j/a→`.! In this range, the sets areself-similarand their
averaged density scales withx as }xD2n. Here D is the
fractal dimension of the set, commonly referred to as
Hausdorff dimension of the fractal@7#, andn is the topologi-
cal ~integer! dimension of the embedding Euclidean spa
which is always not less thanD, i.e., D<n.

The fractal dimensionD is not, however, the only geo
metric parameter required for the complete description
self-similar fractal objects. The other is the index of conne
tivity u @4,6,8–10#; contrary to the fractal dimensionD that
describes the scaling behavior of the averaged ‘‘mass’’ d
sity of a fractal set, the indexu quantifies how the ‘‘elemen-
tary’’ structural units~each of size approximately equal t
a) inside the set~e.g., the filled and empty sites for th
problem of the site percolation on lattices! are ‘‘glued’’ to-
gether to form the entire fractal object.~Roughly speaking,
the parameteru describes the ‘‘shape’’ of a fractal set an
may be different for fractals even with equal values of t
fractal dimensionD. The geometric sense of the indexu is
discussed on a descriptive level in Ref.@11#.! It is worth
mentioning that the index of connectivityu plays an impor-
tant role in many dynamical phenomena on fractals, e
transport processes in disordered media@6,8–10,12,13#, ‘‘bi-
molecular’’ chemical reactions@14,15#, and localization of
2437 © 1997 The American Physical Society
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2438 56ALEXANDER V. MILOVANOV
waves @4,16,17#. The original important promotion of the
parameteru was given in the pioneering paper@6#, where the
concept of the range-dependent diffusion on percolating
works was proposed. By applying the scaling theory, it h
been shown@6# that the diffusion constant on a percolatin
network, for length scalesx betweena andj, behaves as a
power law proportional tox2u.

This insight, along with the realization that solving th
problem of the range-dependent diffusion was equivalen
solving the~scalar! elastic vibration problem~for more de-
tails see, e.g., Ref.@4#!, led Alexander and Orbach@3# to
evaluate the density of states for vibrations of a percola
network at criticality~these vibrations were termed fractons!,
with the introduction of the so-called fracton, or spectr

dimension d̃ . This new quantity was defined as a speci
combination of the fractal dimensionD and the index of

connectivityu and has the formd̃[2D/(21u)<D. In ad-
dition, Alexander and Orbach@3# noted that the spectral di
mension d̃ for the percolating networks at criticality wa
numerically remarkably close to the mean-field value
~exact in Euclidean dimensionn56) for all embedding di-
mensionsn greater than one, even though the parame
D andu were by no means constant as functions ofn ~below
n56). This numerical evidence led them to speculate t
the spectral dimensiond̃ might be exactly 4/3 for the perco
lating networks at criticality in all embedding dimensio
n>2. This has come to be known as the Alexander-Orb
~AO! conjecture.

Much theoretical and numerical effort has been made
the attempt to prove or disprove the AO conjecture~for a
comprehensive review see, e.g., Refs.@4,10#!. This conjec-
ture is important because, if true, it would allow one to d
scribe the fractal geometry of percolation by using t
unique basic concept of the spectral dimensiond̃54/3 for
such fundamental problems as the correlated and unco
lated percolation on lattices as well as for the more gen
continuum percolation problem@2,4#. The great interest in
this conjecture results not only from the universal value
assigned tod̃ , but also from the fact that it establishes
relationship between the index of connectivityu that appears
in the description of the dynamical processes on fractals
the Hausdorff fractal dimensionD, yielding the scaling be-
havior of the density of the fractal substrate.

At present, there exists a rigorous mathematical treatm
of the topology of percolation for the sufficiently high em
bedding dimensionsn>6, which is based on the mean-fie
theory. The mean-field percolation can be modeled by
percolation on a Cayley tree~Bethe lattice!. A Cayley tree is
defined as a graph without loops in which each node has
same number of branches; the self-similarity of such gra
is not necessarily manifest in their geometric representat
but is seen in their connectivity@18#. The percolation prob-
lem on Cayley trees has been solved exactly by Coni
@19# and the rigorous analytical resultd̃54/3 has been es
tablished for alln>6 ~see also the review by Havlin an
Ben-Avraham@10#!. This result proves the AO conjecture
n>6.

For thelower embedding dimensions 2<n<5, the mean-
field theory cannot be directly applied and the analytical c
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sideration of the topology of percolation in these dimensio
meets considerable difficulties@10#. Meanwhile, a large body
of studies, both theoretical and numerical, indicates that
true value of the spectral dimensiond̃ is slightly smaller
than 4/3 for 2<n<5 ~for a review see, e.g., Ref.@4#!. ~This
smaller value might be a remarkably accurate estimate od̃
for percolation in all 2<n<5 being, nevertheless, quit
close, although not equal, to 4/3.! However, no rigorous ana
lytical proof or disproof of the AO conjecture has been o
tained for 2<n<5 and the validity of this conjecture fo
such embedding dimensionsn still remains an open questio
@4,10#.

The goal of the present study is to showanalytically that
the AO conjecture might bevalid for percolation in embed-
ding Euclidean dimensions 2<n<5 if a slight improvement
of the original AO result 4/3 is made for thesen. Indeed, we
intend to prove that the spectral fractal dimensiond̃ for the
percolating networks at criticality might be assigned the u
versal value approximately equal to 1.327 in all embedd
dimensions 2<n<5; we note that this value is indee
smaller than the classical~mean-field! result 4/3, i.e.,

d̃[2D/~21u!'1.327,4/3, 2<n<5. ~1!

Thus we are considering Eq.~1! as the possible improved
form of the AO conjecture for 2<n<5.

To give support for the improved AO conjecture~1!, we
propose below an unconvential analytical treatment of
fractal geometry of percolation, which is based on the m
generaltopological methods.~Some topological aspects o
percolation in random scalar fields have been recently
cussed in Ref.@20#.! The basic concept of our study will b
that of thefractal manifold to be introduced in Sec. II. We
show that this concept might be an effective analytical t
when dealing with the basic geometric features of the fra
objects, which yields a key to the description of fractals
the framework of thedifferential topology. In Sec. II we
exploit the concept of the fractal manifold to quantify th
topological properties of the percolating fractal sets at cr
cality. This approach is then used in Secs. III and IV for t
direct analytical calculation of the spectral fractal dimens
d̃ at the percolation threshold@see Eq.~1!#. It is proven in
these sections that the proposed estimate~1! has the funda-
mental topological origin related to the intrinsic geometri
properties of the percolating sets at criticality. The relev
topological constraints on the embedding dimensionn are
discussed in detail in Sec. V. With use of the famousWhit-
ney theoremon the embedding of manifolds@21#, we show
in Sec. V that the improved form~1! of the AO conjecture
could be indeed valid only for the relatively low embeddin
dimensionsn, which lie in the above range 2<n<5. We
now turn to the consideration of the general topologi
proof ~as rigorous as possible under the limitations of
article! for the AO conjecture in the form~1!.

II. BASIC TOPOLOGICAL CONCEPTS

We start with an infinite, statistically homogeneous, is
tropic random scalar fieldc(x), where xPEn and n>2.
~Here En denotesn-dimensional Euclidean space. The p
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56 2439TOPOLOGICAL PROOF FOR THE ALEXANDER-ORBACH . . .
rametern is defined to be integer.! Assume the condition
u¹c(x)uÞ0 everywhere, except perhaps points of negligi
measure.@This condition implies that the fieldc(x) is non-
degenerated for almost allx. Note that the infinite values o
¹c(x), i.e., whenu¹c(x)u51`, are allowed.#

Let h5hc be the critical percolation threshold; this d
videsEn into the two topologically distinct parts:c(x),hc

andc(x).hc . Without loss of generality, we may assume
is the partc(x),hc that includes the percolating~i.e., con-
nected infinite! set, which we shall denote byFc . Because
the topology of percolation at criticality is associated w
the fractal behavior@1,2#, we consider the set of pointsFc as
a self-similar fractal object with the Hausdorff dimensionD

and the spectral dimensiond̃52D/(21u). We also intro-
duce the standard notation]Fc for the boundary of the se
Fc . It is clear that whereasFc is defined by the inequality
c(x),hc , the boundary]Fc is determined by the equatio
c(x)5hc .

Let us remark that we use the term ‘‘connected’’ in t
precise topological sense ‘‘path connected.’’ ‘‘Path co
nected’’ means that along with any its two points, the pa
connected set also includes a ‘‘path’’ that goes from one
these points to another@22#. A path in Fc is defined as a
continuous mappingf: Ī →Fc of the closed unit interva
Ī [@0,1# into Fc . The pointsf(0) andf(1) represent, by
definition, the initial and the final points of the path. A pa
in Fc can be viewed geometrically as a continuous spa
curvegf that goes fromf(0) to f(1) and represents the s
of all pointsf( Ī ). Note that the mappingf that appears in
the definition of the term ‘‘path’’ is notone to oneandmu-
tually continuous in general@22#, so that the curvegf may
have an arbitrary number of points of self-intersections. N
also that due to the path connectedness of the setFc , the
spectral fractal dimensiond̃>1. Our goal now is to calculate
the spectral dimensiond̃ for the setFc , assuming the fracta
topology of percolation at the threshold.

To perform such a calculation independently of the p
ticular value of the embedding dimensionn, we propose an
untraditional approach based on the formal introduction o
coordinate system on a fractal object. Following Ref.@23#,
we first supply the fractal setFc with the specific topologica
structure of thefractal manifold. This means that we repre
sent the setFc as a union of a finite or denumerable numb
of domains, each topologically equivalent to a domain
k-dimensional Euclidean spaceEk, where the parameterk
will be quantified below. The local coordinate system
x1 , . . . ,xk for each domain can be then defined as the s
dard Euclidean coordinates inEk, whereas the transition
from one local coordinate system to another is quantified
the so-called matrix of the transition functions, which expl
itly describes the global representation ofFc as the union of
the local Euclidean domains@21,24#. ~The idea to define a
local coordinate system inFc is therefore reduced to ‘‘map
ping’’ of the Euclidean coordinate basis introduced in t
Euclidean spaceEk into the setFc . The ‘‘gluing’’ of differ-
ent local coordinate systems by means of the matrix of
transition functions@21,24# determines the particularglobal
topological structure of the fractal manifold.! Thus we con-
sider the fractal manifold as the topological object that
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locally identical to the Euclidean spaceEk of some dimen-
sionality k. The global topology of the fractal manifold is
then defined by the transition functions for each pair of lo
coordinate systems.

The introduced concept of thefractal manifold basically
follows the widely known definition of thesmooth
k-dimensional manifold (k5positive integer! @21,24#, this
being the fundamental concept of the standard differen
geometry. The only formal difference between the above t
concepts is that the parameterk for the fractal manifold may
not be necessarily the positive integer number, but is na
rally allowed to take arbitrary fractional values. Below w
refer to the parameterk as the dimensionality of the fracta
manifold. @Strictly speaking, to give the rigorous definitio
of the fractal manifold, one should also generalize the not
of the derivatives of the transition functions in the light
the fractional differential calculus@5#; this might be impor-
tant when establishing the topological equivalence betw
the manifolds having thefractional values of the dimension
ality k. Although such a complicated discussion mostly w
be beyond the scope of the present article, we draw atten
to the following important point. Namely, throughout th
present study, the concept of the ‘‘topological equivalenc
implies, by definition, that thefractal geometries of any two
topologically equivalent fractal manifolds are identical, i.
are characterized by the same geometric parameters, so
the dimensionalitiesk of the topologically equivalent fracta
manifolds are always assumed to coincide. This in turn
plies that the derivatives of the transition functions must
main continuous up to the sufficiently high, perhaps fra
tional @5# order consistent with the given value ofk. The
continuity of all the derivatives of the transition functions u
to any required~fractional! order is therefore presuppose
below when necessary.#

The explicit numerical value ofk is determined by the
fractal geometry of the setFc . Indeed, it can be shown@23#
that the dimensionalityk actually coincides with the spectra
fractal dimension of the setd̃ , i.e., k[ d̃ . Consequently, we
determine the topology of the setFc as that of the fractal
manifold that islocally identical ~i.e., topologically equiva-
lent! to the Euclidean spaceEd̃ of the~fractional! dimension-
ality d̃ equal to the spectral fractal dimension of the setFc .
~The relationk[ d̃ could be illustrated by saying that th
spectral fractal dimensiond̃ yields the ‘‘number of degrees
of freedom’’ for a point particle on the fractal manifold o
the dimensionalityk5 d̃ .!

We now need to explain how the spaceEd̃ with the frac-
tional value of the dimensionalityd̃ could be introduced.
Assume first that the parameterd̃ is a positive integer num-
ber and letI denote the~open! unit interval I[(0,1); then
the d̃-dimensional Euclidean spaceEd̃ can be constructed a
the direct productI 3...d̃ ...3I of d̃ identical representa
tions of the intervalI @21,22,24#. Note that any coordinate
system inEd̃ clearly would containd̃ independent coordi-
natesx1 , . . . ,xd̃ , each defined on a set topologically equiv
lent to I , with the Hausdorff dimension equal to one. Th
consideration suggests the following formal definition of t
spaceEd̃, where d̃52D/(21u) is fractional. Consider a
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2440 56ALEXANDER V. MILOVANOV
continuous self-affine fractal curve whose Hausdorff dim
sion is chosen to be (21u)/2>1 and let I u denote the
‘‘unit’’ element of this curve, so thatI u is reduced toI when
u[0. ~The concept of the self-affine fractal curve is d
cussed in detail in, e.g., Refs.@1,7#.! We now define the
space Ed̃ ( d̃ is the fractional! as the direct produc
I u3...d̃ ...3I u of d̃ identical representations of the eleme
I u . This definition implies that any coordinate system inEd̃

( d̃ is the fractional! formally contains thefractional number
d̃ of independentcoordinatesx1 , . . . ,xd̃ , each defined on a
set topologically equivalent toI u , with the Hausdorff dimen-
sion equal to (21u)/2. ~Note that this dimension exceed
unity in general.! We also remark that the elementI u
itself can be defined as the formal direct produ
I 3...(21u)/2...3I of (21u)/2 identical representations o
the intervalI . Because the dimensionality of the direct pro
uct is the algebraic sum of the dimensionalities of the ter
involved, the spaceEd̃ alternatively can be defined as th
direct productI 3...D...3I of D identical unit intervalsI ,
where we took into account that d̃(2
1u)/25D. This alternative definition immediately show
that the volume of any domain of the spaceEd̃ behaves with
the given length scalex as proportional toxD, in precise
agreement with the geometric sense of the Hausdorff dim
sion D of the setFc .

To proceed with the description of the topology of t
percolating fractal setFc , we note that the scalar rando
field c(x) ~which had been used to generate the setFc at the
threshold! is assumed to be infinite, isotropic, and statis
cally homogeneous. This would mean that theglobal ~rather
than only local! topology of the setFc would be that of
d̃-dimensional Euclidean spaceEd̃, with some fractional

value of d̃ . We formalize this intermediate result by writin
Fc;Ed̃, where ‘‘; ’’ denotes the topological equivalence
~For the sake of simplicity, we ignore here the possible
istence of theisolatedfractal ‘‘voids’’ of all the topological
dimensions between 2 andn>2. Such an approximation i
equivalent to saying that the setFc is assumed to becon-
tractible, i.e., could be continuously deformed into a po
@22#. An inclusion of the isolated ‘‘voids’’ may violate the
equivalence relationFc;Ed̃ in general.!

Then, it is well known~see, e.g., Refs.@22,24,25#! that the
Euclidean spaceEd̃ ( d̃ is a positive integer! is topologically
equivalent to ad̃-dimensional open diskD d̃ defined by the
inequality

x1
21•••1xd̃

2
,1. ~2!

In view of the above generalized definition of the spaceEd̃

( d̃ is fractional!, it is natural to assume that this topologic
equivalence can be extended to the fractional values ofd̃ if
one defines thefractal manifold D d̃ by the same inequality
~2! now formally having thefractionalnumberd̃ of the com-
ponents on the left-hand side.~The proposed topologica
equivalence of the manifoldsEd̃ and D d̃ for the fractional
values of d̃ could be rigorously considered similar to th
-

t

t

-
s

n-

-

-

when d̃ is a positive integer number@25# and will be dis-
cussed in more detail elsewhere.!

Consequently, we getEd̃;D d̃. Because, moreover
Fc;Ed̃, one concludes that the fractal manifoldFc is topo-
logically equivalent to thed̃-dimensional open diskD d̃, i.e.,
Fc;D d̃. A ramification of this result is that the boundar
]Fc of the manifoldFc is topologically equivalent to the
boundary of the open diskD d̃, which can be naturally de
fined as (d̃21)-dimensional sphereSd̃21. ~Note that for all
positive integerd̃ , the standard sphereSd̃21 is the boundary
of the standard diskD d̃ @25#.! It is clear that the sphereSd̃21

with the fractional value ofd̃ can be introduced as the fract
manifold through the equation

x1
21•••1xd̃

2
51, ~3!

where the number of the components on the left-hand sid
formally fractional and equals tod̃ .

Let us remark that the fractional number of the comp
nents on the left-hand side of expressions~2! and ~3! is an
explicit manifestation of the fact that the introduction of
coordinate system on a fractal object formally requires
fractional number of the independent coordinates equa
the spectral fractal dimensiond̃ . We also mention that Eq
~3! with the fractional value of the parameterd̃ has been
used in Ref.@23# to derive a general analytical representati
for the Laplacian on a fractal set, in the form originally pr
posed by O’Shaughnessy and Procaccia@8# for the diffusion
equation on fractals.

With use of Eq.~3!, it is straightforward to obtain that the
sphereSd̃21 is seen from its center under the solid angle

V d̃5 d̃
p d̃ /2

G~ d̃ /211!
, ~4!

where G is the Euler gamma function. Equation~4! is an
obvious extension of the well-known expression@26# for the
solid angleV d̃ to the fractional values ofd̃ . From Eq.~4!
one immediately recovers the familiar resultsV252p for
the standard circleS1 and V354p for the standard two-
dimensional sphereS2.

We now turn to the calculation of the solid angleV d̃ for
the setFc . More precisely, we intend to prove that the qua
tity V d̃ for the setFc must be equal to the fundament
constantp in all embedding Euclidean dimensions 2<n<5.
Knowing the exact value of the solid angleV d̃ and making
use of the explicit analytical representation~4!, one then
could obtain the desired value of the spectral fractal dim
sion d̃ by solving the transcendental algebraic equat
V d̃5p.

III. PERCOLATION THRESHOLD
FROM THE TOPOLOGICAL VIEWPOINT

Consider first the closedd̃-dimensional diskD̄ d̃ that is
the union of the opend̃-dimensional diskD d̃ and its bound-
ary Sd̃21, i.e., D̄ d̃;D d̃øSd̃21. The closed diskD̄ d̃ can be
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56 2441TOPOLOGICAL PROOF FOR THE ALEXANDER-ORBACH . . .
defined clearly by the inequalityx1
21•••1xd̃

2
<1 and is to-

pologically equivalent to the closed setF̄ c;Fcø]Fc , i.e.,
D̄ d̃; F̄ c. The deduced topological equivalenceD̄ d̃; F̄ c is
the formal topological manifestation of the percolation stru
ture of the setFc at criticality. In particular, it immediately
ensures that the setF̄ c includes the point at infinityP` of the
embedding Euclidean spaceEn (n>2). ~Note that inclusion
of the point at infinity is the topological formalization for th
divergence of the percolation correlation length at the thre
old j→`.! We can now identify the pointP` with, for in-
stance, the northern poleN of the sphereSd̃21. ~In the event
of the positive integerd̃ , the mappingP`→N is discussed in
Ref. @24#.! Then, letS be the southern pole ofSd̃21. It is
clear that the two pointsN andS of the sphereSd̃21 are, in
the standard sense, diametrically opposite because Eq~3!

~which formally defines the fractal manifoldSd̃21) is invari-
ant under the inversion of all the coordinat
x1→2x1 , . . . ,xd̃→2xd̃ .

The important step is to notice that the manifoldD̄ d̃ is
path connected; hence, along with the two pointsN andS, it
also includes a pathgf that goes fromN to S. Of course, the
manifold D̄ d̃ may include in general a variety of differen
pathsgf that connect the two pointsN andS. We are now
interested in finding~if possible! a particular pathg̃ f̃ with
the initial point N and the final pointS, which everywhere

densely@25# covers the manifoldD̄ d̃. ~Roughly speaking,
‘‘everywhere densely’’ means thatg̃ f̃ passes through eac
point of D̄ d̃. In general, there may exist such points ofD̄ d̃

through whichg̃ f̃ passes more than once; these would be
points of self-intersections of the curveg̃ f̃ .)

The pathg̃ f̃ may exist under the following topologica
constraint on the dimensionalityd̃ of the manifoldD̄ d̃. In
fact, becauseD̄ d̃ is the fractal manifold, it is reasonable t
consider the pathg̃ f̃ as a spatialfractal curve @1,7# having
some Hausdorff fractal dimensionD̃>1. This curve canev-

erywhere denselycover the manifoldD̄ d̃ ~which has been
quantified as the fractal set of the Hausdorff dimensionD

and the spectral dimensiond̃) only if D̃>D. Since the Haus-
dorff dimensionD is always not less than the spectral dime
sion d̃52D/(21u), i.e., D> d̃ , one must requireD̃> d̃ .
Taking into account thatd̃>1 due to the path connectedne
of D̄ d̃, one gets the condition

1< d̃<D̃ . ~5!

The inequality~5! shows that the fractal manifoldD̄ d̃ can be
everywhere densely covered by the fractal curveg̃ f̃ only for
the relatively low values of the dimensionalityd̃ that are not
beyond the range~5!. ~In higher dimensionsd̃ , the manifold
D̄ d̃ would contain ‘‘too many’’ points to be densely covere
by the fractal curve.!

Our attention is further concentrated on the topologi
properties of the curveg̃ f̃ at the percolationthreshold. It is
intuitively clear that the concept of the threshold is asso
-

h-

e

-

l

i-

ated with the smallest value possible for the parameterd̃ , so
that the manifoldD̄ d̃ must be ‘‘minimal’’ from the viewpoint
of its dimensionality. Thus we assume that the fractal ma
fold D̄ d̃ has the lowest possible dimensionalityd̃ at the
threshold of percolation; this lowest dimensionality must
defined from the relevant topological conditions to be d
cussed below. The concerned property of minimality ofD̄ d̃

at the threshold would then impose the corresponding res
tions on the topology of the curveg̃ f̃, which is defined to
cover the manifoldD̄ d̃ everywhere densely. To quantify th
property of ‘‘minimality’’ in the topologically accurate way
we propose the following three-step consideration outlined
Secs. III A–III C.

A. Exclusion of points of self-intersections

Let us first recall that the mappingf̃ that generates the
path g̃ f̃ has been defined as the continuous~but not neces-
sarily one-to-oneandmutuallycontinuous! mapping, so that
self-intersections of the curveg̃ f̃ were allowed in genera
~see Sec. II!. On the other hand, we take into account that
dimensionality d̃ of the fractal manifoldD̄ d̃ has been as-
sumed to take the lowest, under the relevant conditio
value at the percolation threshold. But the lower the dim
sionality d̃ of the manifoldD̄ d̃, the ‘‘shorter’’ the pathg̃ f̃ .
~Note that this path is everywhere dense inD̄ d̃.! This sug-
gests the assumption that the property of minimality mig
enable one to construct an everywhere dense covering oD̄ d̃

by the shortest pathg̃ f̃ possible, namely, by the fractal curv
g̃ f̃ , which has no points of self-intersections. In other
words, the shortest pathg̃ f̃ yielding, by definition, an every-
where dense covering of the manifoldD̄ d̃ would be the one
that passes through each point ofD̄ d̃ once and only once.
Thus the condition thatg̃ f̃ has no points of self-intersection
would be that topological restriction on the geometry ofg̃ f̃

that we associate with the property of minimality ofD̄ d̃ at
the percolation threshold. We use this restriction in Sec.
to calculate the desired numerical value of the dimension
ity d̃ that would appear in the modified form~1! of the AO
conjecture.

Having required that the fractal manifoldD̄ d̃ can be ev-
erywhere densely covered by the pathg̃ f̃ that has no points
of self-intersections, we immediately impose an essential
pological constraint on the admissible values of the dim
sionality d̃ . In fact, it is clear that such a particular coverin
cannot be constructed for the sufficiently high values ofd̃ ;
for instance, this is already impossible ford̃52. The rel-
evant example is the well-known Peano curve@5,27#, which
is defined as the plane path densely covering the t
dimensional unit squareĪ 3 Ī . This curve, however, has a
infinite number of points of self-intersections~for instance,
of multiplicity 4 @27#! where different segments of the curv
are in contact with each other. Consequently, the condi
that g̃ f̃ has no points of self-intersections would alread
imply that d̃ is less than 2, i.e., 1< d̃,2. A more precise



pin

o

ith

bl

la

-

n

s

lity
ns

.
lie

is

ni

s
a
of
s
c
h
ta
he

ch

/

l to

that
-

-

be
e

is
e

ts

of

ty
d

e

een
eter
d

2442 56ALEXANDER V. MILOVANOV
upper bound ford̃ in this inequality will be obtained below
~see Sec. III B!.

The imposed condition for the pathg̃ f̃ to have no points
of self-intersections means that the corresponding map

f̃: Ī →D̄ d̃ is a one-to-one continuousmapping rather than
simply continuous. ‘‘One-to-one’’ indicates that the points

the unit interval Ī are in a one-to-one correspondence w

the points of the manifoldD̄ d̃ ~up to a set of negligible

measure!, so that the inverse mappingf̃21: D̄ d̃→ Ī can be

introduced. We now prove that for suchf̃ the inverse map-

ping f̃21 is also continuous, so that the pathg̃ f̃ is actually

generated by aone-to-one mutually continuousmapping,f̃.

Indeed, consider a one-to-one continuous mappingf̃ of

the unit interval Ī on D̄ d̃, i.e., f̃: Ī →D̄ d̃. Becausef̃ is one
to one, we can introduce theorder relation for the points of

D̄ d̃ in the following way. Define the parametertP Ī that
ranges over the unit intervalĪ . Then the mappingf̃ can be
given by a continuous single-valued function of the varia
t, i.e., f̃5f̃(t), where the pointsf̃(t) range overD̄ d̃ for t
varying between 0 and 1. We now introduce the order re
tion on D̄ d̃ by setting thatf̃(t1).f̃(t2) if and only if t1.t2

for all t1 ,t2P Ī . This order relation makes the functionf̃(t)
monotonically increasing onĪ . @One could define, alterna
tively, that f̃(t1),f̃(t2) if and only if t1.t2 for all t1 ,t2

P Ī , making the functionf̃(t) monotonically decreasing o
the interval Ī .# Thus the functionf̃(t) becomes a single
valued continuousmonotonic function on the interval Ī ,
with the pointsf̃(t) ranging overD̄ d̃. It is widely known
from the standard analysis~see, e.g., Ref.@28#! that for such
a function f̃(t) with the aboveorder relation, the inverse
function f̃21 is well defined, single-valued, and continuou
Q.E.D.

Our result, therefore, says that the property of minima
of D̄ d̃ makes it possible to construct an everywhere de
covering ofD̄ d̃ by the specific pathg̃ f̃ where the mapping
f̃: Ī →D̄ d̃ is one to one and mutually continuous~up to a
set of negligible measure! rather than simply continuous
Moreover, the very existence of such a path already imp
that the dimensionalityd̃ of the manifoldD̄ d̃ is less than 2,
i.e., 1< d̃,2. A one-to-one mutually continuous mapping
usually termed ‘‘homeomorphism’’@22,25,27#; thus we can
formulate our conclusion by saying that the property of mi
mality of D̄ d̃ implies the existence of the pathg̃ f̃ that ev-
erywhere densely covers the manifoldD̄ d̃ and is homeomor-
phic to the unit intervalĪ . ~Note that in the framework of the
present study, we consider the term ‘‘homeomorphism’’ a
weaker topological concept than the ‘‘topological equiv
lence.’’ In fact, we imply that the topological equivalence
two fractal manifolds preserves their fractal geometry,
that any two topologically equivalent fractal manifolds ne
essarily have the same geometric characteristics. Meanw
two homeomorphic manifolds may have different frac
structure. A well-known example is the construction of t
Koch curve from the unit intervalĪ @5,10,18#. Such a con-
g
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struction provides a homeomorphism between the Ko
curve and the unit intervalĪ ; however, the Koch curve is the
fractal object of the Hausdorff dimension log4
log3'1.26 . . ..1 @5,10,18#, whereas Ī is a segment of a
smooth curve whose Hausdorff dimension is clearly equa
one.!

B. Constraint on the dimensionality d̃

We now strengthen the above inequality 1< d̃,2 by con-
sidering the topological consequences of the conclusion
the pathg̃ f̃ is homeomorphic toĪ . Indeed, there is a re
markable topological result@27# saying that the curveg̃ f̃

that is homeomorphic to the intervalĪ can be embedded
~without self-intersections! into the specific topological ob
ject known as the Sierpinski carpet.~The Sierpinski carpet
therefore can be treated as theuniversal coveringfor the
curve g̃ f̃ homeomorphic toĪ @27#.! The topology of the
Sierpinski carpet had been widely investigated; it can
shown~see, e.g., Ref.@18#! that the Sierpinski carpet is th
plane fractal set and that its Hausdorff fractal dimension
equal to log8/log3'1.89 . . . .Because the property for th
curve g̃ f̃ to be homeomorphic toĪ is the topological invari-
ant @27#, one should require that the Hausdorff dimensionD̃

of the curveg̃ f̃ should not exceed the value log8/log3 for i
universal covering, i.e.,D̃< log8/log3. From the inequality
~5! one then gets the constraint on the dimensionalityd̃ in
the form

1< d̃< log8/log3'1.89 . . .,2, ~6!

providing theexistenceof the everywhere dense covering
the manifold D̄ d̃ by the fractal curveg̃ f̃ , which has no
points of self-intersections.

C. Definition of the critical solid angle

We are now ready to quantify the property of minimali
of the manifold D̄ d̃ in the final form. Indeed, we argue
above that the minimal fractal manifoldD̄ d̃ can be every-
where densely covered by the fractal curveg̃ f̃ that is ho-
meomorphic to the unit intervalĪ . Assume that this curve is
seen from the center of the manifoldD̄ d̃ ~i.e., from the center
of the sphereSd̃21) under the solid angleṼ. Becauseg̃ f̃ is
everywhere dense inD̄ d̃, the solid angleṼ is easily seen to
coincide with the solid angleV d̃ that defines the spher
Sd̃21 @see Eq.~4!#, i.e., V d̃5Ṽ.

Then, the concept of the percolation threshold has b
associated with the smallest value possible for the param
d̃ , yielding the critical dimensionality of the fractal manifol
D̄ d̃. @This critical dimensionalityd̃ must be implied in the
modified form ~1! of the AO conjecture.# Taking into ac-
count that the solid angleV d̃ is the monotonically increasing
analytical function of the variabled̃ @in, at least, the range
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~6! that is of interest#, one then defines the correspondi
critical value of the solid angleV d̃ ,min to be assigned to the
threshold of percolation. Thus the critical solid ang
V d̃ ,min is given by Eq.~4! when substituting the critica
value of the dimensionalityd̃ . In view of the above,
V d̃ ,min must coincide with the smallest value possible for t
solid angleṼ ~this being the solid angle determined by t
fractal curveg̃f̃), which we denote byṼmin . Hence, at the
threshold of percolation

V d̃5V d̃ ,min5Ṽmin . ~7!

We now turn to the explicit calculation of the quanti
Ṽmin . This would give us the key to obtain the desired va
of the dimensionalityd̃ at the percolation threshold by com
bining Eqs.~4! and ~7!.

IV. CALCULATION OF THE CRITICAL PARAMETERS

To obtain the numerical value of the solid angleṼmin , we
are reminded that the initial and the final points of the p
g̃ f̃ are, respectively, the two diametrically opposite poles
the sphereSd̃21, i.e., the pointsN andS. It is clear that the
path g̃ f̃ going from N to S cannot be based on the sol
angleṼ smaller than the one that defines thestandard arch
of the semicirclewith the end pointsN andS. @Note that the
inequality ~6! provides the existence of a homeomorphis
between this arch andg̃ f̃ .# Assuming the embedding dimen
sionality n to be greater than one, i.e.,n>2, one immedi-
ately concludes that the standard arch of the semicircle w
the diametrically opposite end pointsN andS is based on the
solid angleV2/25p, whereV252p is the total solid angle
for the standard circleS1 @see Eq.~4!#. HenceṼ>V2/25p
and, consequently,

Ṽmin5p. ~8!

Because, moreover,V d̃ ,min5Ṽmin at criticality @see Eq.~7!#,
one finally gets the critical valueV d̃ ,min of the solid angle
V d̃ , i.e.,

V d̃ ,min5p. ~9!

Equation~9! proves the above assertion that the solid an
V d̃ for the percolating fractal setF̄ c;D̄ d̃ is equal to the
fundamental constantp at the threshold of percolation. Th
validity of this result assumes, at least, that the topolog
dimension of the embedding Euclidean spacen is greater
than one, i.e.,n>2. In Sec. V, we prove thatn has the upper
bound equal to 5, so that Eqs.~7!2~9! are actually valid for
2<n<5.

Using Eq.~9!, it is now straightforward to obtain the spe
tral fractal dimensiond̃ at the percolation threshold. In fac
taking into account that the solid angleV d̃ is the function of
the spectral fractal dimensiond̃ and combining Eqs.~4!
e

h
f

th

e

l

and ~9!, we find that the parameterd̃ at the percolation
threshold obeys the transcendental algebraic equation
completely topological origin,

d̃
p d̃ /2

G~ d̃ /211!
5p, ~10!

which holds for 2<n<5 ~see Sec. V!. Calculation of the
spectral fractal dimensiond̃ from Eq. ~10! is immediate.
Indeed, under the restriction~6!, the solution to Eq.~10! is
easily proven to beunique. From a simple numerical consid
eration one finally obtains

d̃51.32760.001. ~11!

The result~11! yields the desired, critical value of the spe
tral fractal dimensiond̃ for the percolating sets at the thres
old of percolation@see Eq.~1!#. The constant on the right
hand side of Eq.~11! is remarkably close to~although
slightly smaller than! the original AO result 4/3 and has th
fundamental topological nature, having been deduced fr
the most general geometric properties of the fractal ma
folds. These properties have been described above by
fundamental topological concepts as path connectedness
pological equivalence, and everywhere dense covering
are manifest in expressions~2!2~9!.

The validity of the result~11! assumes that the fracta
manifold D̄ d̃ ~which has been introduced to approximate t
topology of the percolating fractal setFc at criticality! could
be everywhere densely covered by the fractal curveg̃ f̃ with-
out points of self-intersections. The necessary constraint
the intrinsic geometry of the manifoldD̄ d̃ related to the ex-
istence of such a particular covering already have been
cussed above@see, e.g., the inequality~6!#. However, the
important issue ofembeddingof the manifold D̄ d̃ into
n-dimensional Euclidean spaceEn (n>2) and the relevant
constraints on the parametern must be also pointed out. W
prove below that the fractal manifoldD̄ d̃ whose dimension-
ality d̃ obeys the inequality~6! can be embedded into a no
more than five-dimensional Euclidean spaceEn, i.e.,
2<n<5. The derivation of this inequality will complete th
topological proof of the AO conjecture in the form~1!. We
proceed as follows.

V. CONSTRAINT ON THE EMBEDDING DIMENSION

Let 0,«!1 be an arbitrary small positive parameter a
let Ai be an arbitrary point of the curveg̃ f̃ , i.e., AiP g̃ f̃ .
Then, letn denote the topological dimension of the embe
ding Euclidean spaceEn; we assume thatn is an integer
number greater than one, i.e.,n>2.

Surround the pointAi with the closedn-dimensional disk
D̄ i

n(«) of radius «, so that Ai would be the center of

D̄ i
n(«). The diskD̄ i

n(«) could be regarded clearly as the«
vicinity of the point Ai in the embedding Euclidean spac
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En. The boundary of the diskD̄ i
n(«) is defined as the

(n21!-dimensional sphereSi
n21(«), i.e., ]D̄ i

n~«!5Si
n21(«).

Consider the intersectionD̄ i
n(«)ùD̄ d̃ of the disk D̄ i

n(«)

with the fractal manifoldD̄ d̃. In the most general case, th

set of pointsD̄ i
n(«)ùD̄ d̃ is disconnected since it may in

clude more than one ‘‘piece’’ ofD̄ d̃. We are now interested
in thepath-connectedsubset ofD̄ i

n(«)ùD̄ d̃ that includes the
point Ai . Denote this subset by a i(«), i.e.,
a i(«),D̄ i

n(«)ùD̄ d̃, andAiPa i(«).

Then, letg̃ i(«) be an element of the pathg̃ f̃ that every-
where densely covers the subseta i(«). Assuming the in-
equality ~6!, one concludes that the elementg̃ i(«) can be
embedded~without self-intersections! into an element of the
Euclidean planeE2, which we denote byEi

2(«) ~see Sec.
III !. Hence there exists a one-to-one mutually continu
mapping c̃ i of the element g̃ i(«) into Ei

2(«), i.e.,

c̃ i : g̃ i(«)→Ei
2(«).

SinceAi was assumed to bearbitrary point of the curve
g̃ f̃ , one can construct a sequence of the mutually inters
ing disks D̄ i

n(«) that covers the wholeg̃ f̃ ~and hence the

whole D̄ d̃) for the indexi varying, say, between 1 and som
integer numberN(«)@1. Indeed, one could find, for in
stance, the two end points of the elementg̃ i(«), which lie on
the sphereSi

n21(«) and we denote byAi 21 andAi 11. Then,

one defines the disksD̄ i 21
n («) and D̄ i 11

n («) centered at the
pointsAi 21 andAi 11, respectively. Similar to the above, on
finds the new elementsg̃ i 21(«) and g̃ i 11(«) of the curve
g̃ f̃ ; these two elements are easily seen to have the com
end point Ai , which is the center of the diskD̄ i

n(«). In

addition, each of the elementsg̃ i 21(«) and g̃ i 11(«) has one
more end point opposite toAi . Let these end points b
Ai 22 for g̃ i 21(«) and Ai 12 for g̃ i 11(«). The pointsAi 22
andAi 12 are then identified with the centers of the new dis
D̄ i 22

n («) andD̄ i 12
n («) and so on until one reaches the nort

ern N and the southernS poles of the sphereSd̃21. ~Note
that the pointsN andS are, by definition, the end points o
the curveg̃ f̃ .) For the positive~nonzero! values of«, the
total number,N(«) of disks D̄ i

n(«) needed to cover the

whole g̃ f̃ , is finite, i.e., N(«),` for «.0. Hence all the
disksD̄ i

n(«) covering the curveg̃ f̃ can be enumerated by th
index i varying between 1 andN(«), i.e., 1< i<N(«).

The next step is to define the mappin
c̃ i : g̃ i(«)→Ei

2(«) for all 1< i<N(«). This generates the
sequence of the mutually intersecting elementsEi

2(«), which
lies, by assumption, in the Euclidean spaceEn with some
n>2. Let M25ø iEi

2(«) be the union of all the element
Ei

2(«) for 1< i<N(«). We now claim thatM2 has the to-
pology of the compact two-dimensional manifold embedd
into En (n>2). ~For the accurate definition of the term
‘‘compact’’ see, e.g., Refs.@24,25#.! Indeed,M2 is explicitly
represented as the union of the finite numberN(«) of the
elementsEi

2(«), each topologically equivalent to a doma
of the two-dimensional Euclidean planeE2. The transition
from one local domainEi

2(«) to another@e.g., toEi 61
2 («)# is
s

t-

on

s

d

unambiguously defined by the given sequence of the m
ally intersecting disksD̄ i

n(«) for 1< i<N(«) and might be
quantified in the explicit form by theN(«)3N(«) matrix of
the corresponding transition functions.~The matrix of the
transition functions could be obtained directly followin
e.g., Refs.@21,24#. See also the relevant discussion in S
II.! After all, the compactness ofM 2 @21,24,25# immediately
follows from the fact that the numberN(«) of all the do-
mainsEi

2(«) is finite for «.0.
It is theoretically important to note that the dimensional

of the manifoldM25ø iEi
2(«) is defined by the dimension

ality of the local elementsEi
2(«) and is equal to 2 as soon a

eachEi
2(«) is topologically equivalent to a domain of th

two-dimensional Euclidean planeE2. The latter, of course,
means that eachlocal elementEi

2(«) can be embedded into
E2. This property, however, is onlylocal because theglobal
topology of the~entire! manifold M25ø iEi

2(«) may need
more embedding dimensionsn, depending on how the loca
elementsEi

2(«) are glued together to form the global ge
metric structure ofM2. Hence the embedding Euclidea
space for a two-dimensional manifoldM2 is not E2 in gen-
eral, but could be more dimensional. A relevant exam
might be theMöbius bandwhich is a two-dimensional com
pact manifold but cannot be embedded intoE2 @21#. Thus we
are already prepared to conclude that the embedding dim
sion n for the ~compact! manifold Ms of the dimensionality
s might be greater in general thans, i.e., n>s.

The global embedding of manifolds into the Euclidea
spaceEn is quantified by the famousweak Whitney theorem
~see, e.g., Ref.@21#!. The conclusion of this theorem is tha
~i! any compact manifoldMs whose dimensionalitys is in-
teger can bealwaysembedded into the Euclidean spaceEn

of the sufficiently high dimensionalityn>s; moreover,~ii !
the value ofn does not exceed the number 2s11 ~for the
commonly impliedprime embedding that usesall dimen-
sions n), so that n could be found in the range
s<n<2s11. ~For the full discussion of the particular as
sumptions that might be imposed on the topology of
manifold Ms see, e.g., Ref.@21#.! In other words, the Whit-
ney theoremguaranteesthat the compact manifoldMs can
be embedded intoE2s11. This, of course, does not exclud
thatMs could be already embedded into the Euclidean sp
En whose dimensionalityn is smaller than 2s11 if the ap-
propriate topological conditions hold. Hence the value
n52s11 must be treated as theupper prime embedding
dimension forMs; it is clear that any embedding ofMs into
the Euclidean spaceEm of the dimensionalitym.2s11
could be reduced, according to the Whitney theorem, to
prime embedding into someEn with n<2s11.

We are now going back to the manifoldM25ø iEi
2(«).

For this manifold, the above parameters is equal to 2, i.e.,
s52. Making use of the Whitney theorem, one immediate
concludes that the prime embedding ofM2 could be found
into at most five-dimensional Euclidean spaceE5, where we
took into account that 2s1155 for s52. In general, the
dimensionality n of the embedding Euclidean spaceEn

would be not less than the dimensionality of the manifo
M2 itself, i.e., n>2, and not more than the dimensionali
2s1155 guaranteed by the Whitney theorem, i.e.,n<5.
Finally, one gets
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2<n<2s1155, ~12!

yielding the desired constraint on the dimensionalityn. The
result ~12! completes the proof of the AO conjecture in th
form ~1!. Q.E.D.

VI. SUMMARY AND CONCLUSIONS

In summary, we have shown that the Alexander-Orba
conjecture @3#, which assigns the universal~mean-field!
value 4/3 to the spectral fractal dimensiond̃ at the percola-
tion threshold in all embedding Euclidean dimensio
n>2, might be improved for 2<n<5 to have the modified
form given by Eq.~1!. The improved form~1! of this con-
jecture would then imply the value approximately equal
1.327 for the spectral dimensiond̃ at the percolation thresh
old in all embedding dimensions 2<n<5. We note that this
improved value is slightlysmaller than the original AO re-
sult 4/3 ~which, as we argued above, remains valid
n>6).

To advocate the improved form~1! of the AO conjecture,
we have proposed an unconventional analytical appro
based on the most general methods of the differential to
ogy. We have shown that the basic topological features
the percolating fractal sets might be effectively investiga
with the introduction of the concept of thefractal manifold,
which extends the widely known concept of the smoo
k-dimensional manifold (k is a positive integer! to the frac-
tional values of the dimensionalityk. In the framework of the
present study, we associated the topology of percolatio
the threshold with that of the fractal manifoldD̄ d̃. This mani-
fold was defined as the closedd̃-dimensional disk, where the
parameterd̃ coincides with the spectral fractal dimension
the percolating set.

The introduction of the fractal manifoldD̄ d̃ has made it
possible to find a simple topological condition that identifi
the threshold of percolation. In fact, we argued that
boundary of the manifoldD̄ d̃ @which is defined as
( d̃21)-dimensional sphereSd̃21# must be seen from insid
under the universal solid angleV d̃5p just at the percolation
threshold@see Eqs.~8! and ~9!#. With use of the Whitney
theorem@21#, we have shown that the resultV d̃5p is valid
for percolation in all embedding Euclidean dimensio
2<n<5.

In view of Eq.~4!, the proposed conditionV d̃5p leads to
the transcendental algebraic equationd̃p d̃ /2/G( d̃ /211)5p

for the spectral fractal dimensiond̃ at criticality, which holds
for 2<n<5. Under the relevant topological constrain
quantified by the inequality~6!, the solution to this equation
is unique, yielding the value of the spectral fractal dimens
at the percolation thresholdd̃51.32760.001 for all
2<n<5 @see Eq.~1!#. This result has the fundamental top
logical origin and is related to such basic topological co
cepts as path connectedness, topological equivalence,
everywhere dense covering. This proves the AO conjec
in the modified form~1!.

It must be emphasized that the analytical approach p
posed in the present study assumes that the percolating
h
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tal sets at the threshold have the topological property ofcon-
tractibility @22#. Such an approach actually ignores t
possible role of the isolated voids of the topological dime
sions between 2 andn>2, wheren is the embedding Eu-
clidean dimension~see Sec. II!. Thus the result~11! might be
exact only for the contractible percolating fractal sets.

A comprehensive investigation of thenoncontractible
fractal manifolds that include the isolated voids might be
topological problem of the outstanding significance. For
stance, this problem might be associated with the problem
the topological classificationof the fractal manifolds from
the viewpoint of algebraic codes when each code identi
the topological type of the fractal manifold through som
classification algorithm@29#. A computer realization of such
classification codes might then answer~in the algebraic way!
the important, for the actual applications, question whet
or not the two given algebraic codes correspond to thetopo-
logically equivalentfractal manifolds.~This might be essen
tial also for the direct numerical recognition of the topolog
cal equivalence of the fractal manifolds of give
dimensionality.! A similar problem of the topological classi
fication of thesmoothmanifolds has received a good deal
attention in the modern topology and the exact algorithm
classification of the two-dimensional smooth manifolds h
been developed@29#. ~It is worth mentioning, however, tha
the algorithmic classification of the three-dimension
smooth manifolds meets already considerable difficulti
whereas the classification of the smooth manifolds wh
dimensionality is not less than 4 cannot be performed
principle @29#.!

In spite of the considerable difficulties that might ari
when analyzing the topological properties of the nonco
tractible fractal manifolds, however, we might attempt to a
ticipate the possible values of the spectral fractal dimens
d̃ at the threshold of percolation for the noncontractible p
colating sets. In fact, it is intuitively clear that the inclusio
of voids would act towards a more intensified percolati
since the convergence of the percolating set to infinity wo
be quicker in this case. Hence the percolation threshold t
might be achieved for thelower value of the spectral fracta
dimensiond̃ compared to the value~11! for the contractible
sets. Thus, one could expect that the fractal dimensiond̃
might be slightlysmaller than approximately 1.327 for the
most general topology of percolation when the voids mig
be present in a considerable range of length scales. Su
conclusion might be supported, for instance, by the num
cal results of Normandet al. @30#, which are among the mos
accurate; these results were obtained for the plane perc
tion (n52), yielding d̃'1.321, which is indeed slightly
smaller than the value~11!. A more detailed consideration o
the topological properties of the noncontractible percolat
fractal sets might be an attractive point for future studies
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